Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416810

RESUMO

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Diagnóstico por Imagem , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos
2.
Chem Commun (Camb) ; 60(8): 943-955, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168791

RESUMO

Transition metal dichalcogenides (TMDCs), which are representative of two-dimensional (2D) semiconductors, have attracted tremendous attention over the last two decades. TMDCs are regarded as potential candidates in modern nano- and optoelectronic applications due to their unique crystal structures and outstanding electronic and optoelectronic properties. For practical use, 2D semiconductors need to be fabricated with diverse morphologies for integration into electronic devices and to perform different functionalities. Controlled patterning synthesis with programmable geometries is therefore highly desired. We review state-of-the-art strategies for the patterned growth of atomic layer TMDCs and their heterostructures, including additive manufacturing and subtractive manufacturing for patterning single TMDC materials and the introduction of other low-dimensional nanomaterials as growth templates or hetero-atoms for element conversion in patterning TMDC heterostructures. The optoelectronic and electronic applications of the as-grown monolayer TMDC patterns are introduced. Future challenges and the prospects for the patterned growth of 2D semiconductors are discussed based on present achievements.

3.
Luminescence ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111323

RESUMO

Light-emitting electrochemical cells (LECs) are kind of easily fabricated and low-cost light-emitting devices that can efficiently convert electric power to light energy. Compared with blue and green LECs, the performance of deep-red LECs is limited by the high non-radiative rate of emitters in long-wavelength region. While various organic emitters with deep-red emission have been developed to construct high-performance LECs, including polymers, metal complexes, and organic luminous molecules (OLMs), but this is seldom summarized. Therefore, we overview the recent advances of organic emitters with emission at the deep-red region for LECs, and specifically highlight the molecular design approach and electrochemiluminescence performance. We hope that this review can act as a reference for further research in designing high-performance deep-red LECs.

4.
Chem Commun (Camb) ; 59(94): 14021-14024, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37946537

RESUMO

Multifunctional metallacycles with solid-state emission are highly important in cancer therapy. Here, an aggregation-induced emission (AIE)-active metallacycle of DTPABT-MC-R is developed with efficient emission in the NIR region in the solid state (PLQYs = 4.92%). DTPABT-MC-R-based nanoparticles also display excellent photo-stability, and impressive photosensitive characteristics (ROS efficiency = 10.74%), finally leading to applications in cellular imaging and photodynamic therapy (PDT).


Assuntos
Dermatite Fototóxica , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
6.
Front Genet ; 14: 1105689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911401

RESUMO

Background: The development of distant metastasis (DM) results in poor prognosis of breast cancer (BC) patients, however, it is difficult to predict the risk of distant metastasis. Methods: Differentially expressed genes (DEGs) were screened out using GSE184717 and GSE183947. GSE20685 were randomly assigned to the training and the internal validation cohort. A signature was developed according to the results of univariate and multivariate Cox regression analysis, which was validated by using internal and external (GSE6532) validation cohort. Gene set enrichment analysis (GSEA) was used for functional analysis. Finally, a nomogram was constructed and calibration curves and concordance index (C-index) were compiled to determine predictive and discriminatory capacity. The clinical benefit of this nomogram was revealed by decision curve analysis (DCA). Finally, we explored the relationships between candidate genes and immune cell infiltration, and the possible mechanism. Results: A signature containing CD74 and TSPAN7 was developed according to the results of univariate and multivariate Cox regression analysis, which was validated by using internal and external (GSE6532) validation cohort. Mechanistically, the signature reflect the overall level of immune infiltration in tissues, especially myeloid immune cells. The expression of CD74 and TSPAN7 is heterogeneous, and the overexpression is positively correlated with the infiltration of myeloid immune cells. CD74 is mainly derived from myeloid immune cells and do not affect the proportion of CD8+T cells. Low expression levels of TSPAN7 is mainly caused by methylation modification in BC cells. This signature could act as an independent predictive factor in patients with BC (p = 0.01, HR = 0.63), and it has been validated in internal (p = 0.023, HR = 0.58) and external (p = 0.0065, HR = 0.67) cohort. Finally, we constructed an individualized prediction nomogram based on our signature. The model showed good discrimination in training, internal and external cohort, with a C-index of 0.742, 0.801, 0.695 respectively, and good calibration. DCA demonstrated that the prediction nomogram was clinically useful. Conclusion: A new immune infiltration related signature developed for predicting metastatic risk will improve the treatment and management of BC patients.

7.
Front Cardiovasc Med ; 10: 1107672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818339

RESUMO

Background: Depression is an independent factor to predict the hospitalization and mortality in the chronic HF patients. Citalopram is known as an effective drug for depression treatment. Currently, there is no specific recommendation in the HF guidelines for the treatment of psychological comorbidity. In recent years, many studies have shown that the citalopram may be safe in treating of chronic HF with depression. Objective: To evaluate the efficacy and safety of the citalopram in the treatment of elderly chronic HF combined with depression. Methods: PubMed, EMBASE, Cochrane, Web of Science, CNKI, VIP, CBM, and Wanfang were searched from their inception to May 2022. In the treatment of elderly chronic HF combined with depression, randomized controlled studies of the citalopram were included. Independent screening and extraction of data information were conducted by two researchers, and the quality was assessed by the Cochrane bias risk assessment tool. Review manager 5.4.1 was employed for statistical analysis. Results: The results of meta-analysis prove that the citalopram treatment for depressed patients with chronic HF has a benefit for HAMD-24 (MD: -8.51, 95% CI: -10.15 to -6.88) and LVEF (MD: 2.42, 95% CI: 0.51 to 4.33). Moreover, the score of GDS decreases, and NT-proBNP (MD: -537.78, 95% CI: -718.03 to -357.54) is improved. However, the comparison with the control group indicates that there is no good effect on HAMD-17 (MD: -5.14, 95% CI: -11.60 to 1.32), MADRS (MD: -1.57, 95% CI: -3.47 to 0.32) and LVEDD (MD: -1.45, 95% CI: -3.65 to -0.76). No obvious adverse drug reactions were observed. Conclusion: Citalopram treatment for depressed patients with chronic HF has a positive effect on LVEF and NT-proBNP. It can alleviate HAMD-24 and GDS, but the relative benefits for LVEDD, HAMD-17 and MADRS still need to be verified.Systematic Review Registration: PROSPERO [CRD42021289917].

8.
Chin Med ; 17(1): 134, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471367

RESUMO

BACKGROUND: Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS: The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS: XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS: We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.

9.
J Phys Condens Matter ; 34(41)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35878598

RESUMO

As the development of wireless communication devices tends to be highly integrated, the miniaturization of very low frequency (VLF) antenna units has always been an unresolved issue. Here, a novel VLF mechanical communication antenna using magnetoelectric (ME) laminates with bending-mode structure is realized. ME laminates combines magnetostrictive Metglas amorphous ribbons and piezoelectric 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3single crystal plates. From the simulation, we confirmed that the ME laminates can reduce the resonance peak from 18 kHz to 7.5 kHz by bending-mode structure. Experiment results show the resonance frequency can be farther reduced to 6.3 kHz by clamping one end of the ME antenna. The ME laminate exhibits a giant converse ME coefficient of 6 Oe cm V-1at 6.3 kHz. The magnetic flux density generated by the ME antenna has been tested along with distance ranging from 0 to 60 cm and it is estimated that a 1 fT flux could be detected around 100 m with an excitation power of 10 mW.

10.
Micromachines (Basel) ; 13(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630142

RESUMO

Piezoelectric cantilever beams are commonly utilized to harvest energy from environmental vibrations due to their simple structures. This paper optimizes a single crystal trapezoidal hollow structure piezoelectric cantilever beam vibration energy harvester with a copper substrate to achieve high energy density at a low frequency. Finite element analysis (FEA) is adopted to optimize the size of the copper substrate at first, and the piezoelectric energy harvester (PEH) is further optimized with a trapezoidal hollow structure under the optimal size of the copper substrate. The developed PEH with a trapezoidal hollow structure (La = 20 mm, Lb = 15 mm, and Lh = 40 mm), with a copper substrate of 80 mm × 33 mm × 0.2 mm, can obtain the best output performance. Under the condition of 1 g acceleration, the resonance frequency and peak voltage output were 23.29 Hz and 40.4 V, respectively. Compared with the unhollowed PEH, the developed trapezoidal hollow structure PEH can reduce its resonant frequency by 12.18% and increase output voltage by 34.67%, while also supplying a power density of 7.24 mW/cm3. This study verified the feasibility of the optimized design through simulation and experimental comparison.

11.
Front Cardiovasc Med ; 9: 775329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252380

RESUMO

BACKGROUND: The control of diseases related to atrial fibrillation (AF) may reduce the occurrence of AF, delay progression, and reduce complications, which is beneficial to the prevention and treatment of AF. An increasing number of studies have shown that AF is associated with depression. However, to date, there has not been a bibliometric analysis to examine this field systematically. Our study aimed to visualize the publications to determine the hotspots and frontiers in research on AF and depression and provide guidance and reference for further study. METHODS: Publications about AF and depression between 2001 and 2021 were retrieved from the Web of Science Core Collection (WOSCC) database. CiteSpace 5.8. R1, VOSviewer 1.6.16, and Excel 2019 software tools were used to conduct this bibliometric study. RESULTS: In total, 159 articles and reviews were analyzed. The number of publications has been increased sharply since 2018. David D. McManus had the largest number of publications. The most prolific country was the USA with 54 publications but the centrality was <0.1. The most prolific institution was Northeastern University. Three clusters were formed based on keywords: The first cluster was composed of atrial fibrillation, depression, anxiety, symptoms, ablation, and quality of life, et al. The second cluster were risk, prevalence, mortality, heart failure, association, et al. While the third cluster included anticoagulation, impact, stroke, management, warfarin, et al. After 2019, stroke and prediction are the keywords with strongest citation bursts. CONCLUSION: Research on AF and depression is in its infancy. Cooperation and exchanges between countries and institutions must be strengthened in the future. The effect of depression on prevalence and mortality in AF, depression on ablation in AF, and impact of depression on anticoagulation treatment in AF have been the focus of current research. Stroke prevention (including anticoagulant therapy) is the research frontier, which may still be the focus of research in the future.

12.
Neuron ; 110(8): 1327-1339.e6, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35139365

RESUMO

The nervous and immune systems are closely entwined to maintain the immune balance in health and disease. Here, we showed that LPS can activate suprarenal and celiac ganglia (SrG-CG) neurons and upregulate NPY expression in rats. Single-cell sequencing analysis revealed that knockdown of the NPY gene in SrG-CG altered the proliferation and activation of splenic lymphocytes. In a neuron and splenocyte coculture system and in vivo experiments, neuronal NPY in SrG-CG attenuated the splenic immune response. Notably, we demonstrated that neuronal NPF in Drosophila exerted a conservative immunomodulatory effect. Moreover, numerous SNPs in NPY and its receptors were significantly associated with human autoimmune diseases, which was further supported by the autoimmune disease patients and mouse model experiments. Together, we demonstrated that NPY is an ancient language for nervous-immune system crosstalk and might be utilized to alleviate inflammatory storms during infection and to modulate immune balance in autoimmune diseases.


Assuntos
Doenças Autoimunes , Neuropeptídeo Y , Animais , Doenças Autoimunes/metabolismo , Humanos , Imunidade , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Ratos , Receptores de Neuropeptídeo Y/genética , Baço/metabolismo
13.
Sci Adv ; 7(26)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34162542

RESUMO

Like most DNA viruses, herpesviruses precisely deliver their genomes into the sophisticatedly organized nuclei of the infected host cells to initiate subsequent transcription and replication. However, it remains elusive how the viral genome specifically interacts with the host genome and hijacks host transcription machinery. Using pseudorabies virus (PRV) as model virus, we performed chromosome conformation capture assays to demonstrate a genome-wide specific trans-species chromatin interaction between the virus and host. Our data show that the PRV genome is delivered by the host DNA binding protein RUNX1 into the open chromatin and active transcription zone. This facilitates virus hijacking host RNAPII to efficiently transcribe viral genes, which is significantly inhibited by either a RUNX1 inhibitor or RNA interference. Together, these findings provide insights into the chromatin interaction between viral and host genomes and identify new areas of research to advance the understanding of herpesvirus genome transcription.


Assuntos
Herpesviridae , Herpesvirus Suídeo 1 , Animais , Linhagem Celular , Cromatina/genética , Subunidade alfa 2 de Fator de Ligação ao Core , Herpesvirus Suídeo 1/genética , Transcrição Viral
14.
Leuk Lymphoma ; 61(14): 3432-3439, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32862749

RESUMO

The optimal chemotherapy-free regimens for treatment-naive CLL still remains undefined. We searched relevant published reports. Three trials with 1017 subjects were identified. In the network meta-analysis, acalabrutinib plus obinutuzumab (Aca + Obi) improved PFS than ibrutinib plus obinutuzumab (Ibu + Obi) (HR:0.43, p = .02) and venetoclax plus obinutuzumab (Ven + Obi) (HR:0.30, p < .001) as IRC assessment. Sensitivity analysis of investigator assessment also showed improved PFS with Aca + Obi than Ibu + Obi (HR:0.46, p = .04) and Ven + Obi (HR:0.34, p = .002). Among these first-line treatments (Aca + Obi, Ibu + Obi, Ven + Obi and chlorambucil plus obinutuzumab (Chl + Obi)), Aca + Obi regimen had the highest probability of 99.1% (IRC assessment) or 98.0% (investigator assessment) to reach the longest PFS. The survival advantage with Aca + Obi was not statistically significant, compared to Ibu + Obi (HR:0.51, p = .21) and Ven + Obi (HR:0.38, p = .07). No significant difference was found in AEs analysis. Our data indicated that Aca + Obi seemed to prolong the PFS than Ibu + Obi and Ven + Obi. Considering our limits, prospective clinical trials directly comparing these regimens are warranted.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Benzamidas , Compostos Bicíclicos Heterocíclicos com Pontes , Clorambucila/uso terapêutico , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Metanálise em Rede , Piperidinas , Estudos Prospectivos , Pirazinas , Sulfonamidas
15.
Nanotechnology ; 29(13): 135501, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29322943

RESUMO

In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.

16.
Biosens Bioelectron ; 91: 482-488, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28073028

RESUMO

In this work, a real-time assay for highly sensitive, label-free, multiplexed electrical detection of lung cancer biomarkers was developed by using silicon nanowire field-effect (SiNW-FET) devices. Highly responsive SiNW arrays were fabricated using a CMOS-compatible anisotropic self-stop etching technique with mass reproducibility and low cost character. The SiNW nanosensor was integrated with PDMS microfluidic device, which allows rapid analyte delivery, makes the analysis to be conducted using exceedingly small samples and enables potential multiplexed detection. The nanowire arrays allowed highly selective and sensitive multiplexed detection of microRNA (miRNA)-126 and CEA. Due to high surface-to-volume ratio that the nanowire dimensions confer, the detection floor of single molecule was achieved. The potential utility in identifying clinical samples for early diagnosis of cancer was demonstrated by analyzing biomarkers in clinical related samples. The developed nanosensor with capability for multiplexed real-time monitoring of biomarkers with high sensitivity and selectivity in clinically relevant samples is highly attractive for diagnosis and treatment of cancer and other diseases.


Assuntos
Técnicas Biossensoriais/instrumentação , Antígeno Carcinoembrionário/sangue , Dispositivos Lab-On-A-Chip , Neoplasias Pulmonares/sangue , MicroRNAs/sangue , Nanofios/química , Silício/química , Biomarcadores Tumorais/sangue , Dimetilpolisiloxanos/química , Desenho de Equipamento , Humanos , Nanofios/ultraestrutura
17.
Sci Rep ; 6: 22554, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26932158

RESUMO

For point-of-care (POC) applications, robust, ultrasensitive, small, rapid, low-power, and low-cost sensors are highly desirable. Here, we present a novel biosensor based on a complementary metal oxide semiconductor (CMOS)-compatible silicon nanowire tunneling field-effect transistor (SiNW-TFET). They were fabricated "top-down" with a low-cost anisotropic self-stop etching technique. Notably, the SiNW-TFET device provided strong anti-interference capacity by applying the inherent ambipolarity via both pH and CYFRA21-1 sensing. This offered a more robust and portable general protocol. The specific label-free detection of CYFRA21-1 down to 0.5 fgml(-1) or ~12.5 aM was achieved using a highly responsive SiNW-TFET device with a minimum sub-threshold slope (SS) of 37 mVdec(-1). Furthermore, real-time measurements highlighted the ability to use clinically relevant samples such as serum. The developed high performance diagnostic system is expected to provide a generic platform for numerous POC applications.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Semicondutores , Antígenos de Neoplasias/análise , Humanos , Concentração de Íons de Hidrogênio , Queratina-19/análise , Nanofios , Sensibilidade e Especificidade
18.
Anal Chem ; 87(22): 11203-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26473941

RESUMO

A direct, rapid, highly sensitive and specific biosensor for detection of cancer biomarkers is desirable in early diagnosis and prognosis of cancer. However, the existing methods of detecting cancer biomarkers suffer from poor sensitivity as well as the requirement of enzymatic labeling or nanoparticle conjugations. Here, we proposed a two-channel PDMS microfluidic integrated CMOS-compatible silicon nanowire (SiNW) field-effect transistor arrays with potentially single use for label-free and ultrasensitive electrical detection of cancer biomarkers. The integrated nanowire arrays showed not only ultrahigh sensitivity of cytokeratin 19 fragment (CYFRA21-1) and prostate specific antigen (PSA) with detection to at least 1 fg/mL in buffer solution but also highly selectivity of discrimination from other similar cancer biomarkers. In addition, this method was used to detect both CYFRA21-1 and PSA real samples as low as 10 fg/mL in undiluted human serums. With its excellent properties and miniaturization, the integrated SiNW-FET device opens up great opportunities for a point-of-care test (POCT) for quick screening and early diagnosis of cancer and other complex diseases.


Assuntos
Antígenos de Neoplasias/análise , Biomarcadores Tumorais/análise , Calicreínas/análise , Queratina-19/análise , Técnicas Analíticas Microfluídicas , Nanofios/química , Neoplasias/química , Antígeno Prostático Específico/análise , Silício/química , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias/diagnóstico
19.
ACS Appl Mater Interfaces ; 6(22): 20378-84, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25338002

RESUMO

Now a human thyroid stimulating hormone (hTSH) assay has been considered as a screening tool for thyroid disease. However, some existing methods employed for in-hospital diagnosis still suffer from labor-intensive experimental steps, and expensive instrumentation. It is of great significance to meet the ever growing demand for development of label-free, disposable, and low-cost productive hTSH detection biosensors. Herein, we demonstrate a novel sensing strategy for highly sensitive and selective immunodetection of hTSH by using a CMOS-compatible silicon nanowire field effect transistor (SiNW-FET) device. The SiNW chips were manufactured by a top-down approach, allowing for the possibility of low-cost and large-scale production. By using the antibody-functionalized SiNW-FET nanosensors, we performed the label-free and rapid electrical detection of hTSH without any nanoparticle conjugation or signal amplifications. The proposed SiNW biosensor could detect hTSH binding down to a concentration of at least 0.02 mIU/L (0.11 pM), which is more sensitive than other sensing techniques. We also investigated the influence of Debye screening with varied ionic strength on hTSH detection sensitivity, and real-time measurements on various concentrations of the diluted buffer. The simple, label-free, low-cost, and miniaturized SiNW-FET chip has a potential perspective in point-of-care diagnosis of thyroid disease.


Assuntos
Técnicas Biossensoriais , Nanofios/química , Silício/química , Tireotropina/análise , Transistores Eletrônicos , Anticorpos Imobilizados/imunologia , Eletricidade , Humanos , Concentração Osmolar , Tireotropina/imunologia
20.
Nanoscale ; 6(21): 13036-42, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25248104

RESUMO

Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Antígeno Prostático Específico/química , Neoplasias da Próstata/diagnóstico , Silício/química , Biomarcadores Tumorais , Eletroquímica , Humanos , Concentração de Íons de Hidrogênio , Masculino , Metais/química , Nanofios , Óxidos/química , Proteômica , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA